Describe on Wheatstone’s Bridge - QS Study
top logo

An important application of Kirchoff’s law is the Wheatstone’s bridge (Figure).

Wheatstone’s network consists of resistances P, Q, R and S connected to form a closed path. A cell of emf E is connected between points A and C. The current I from the cell is divided into I1, I2, I3 and I4 across the four branches. The current through the galvanometer is Ig. The resistance of galvanometer is G.

a2

Fig: Wheatstone’s bridge

Applying Kirchoff’s current law to junction B,

I1 – Ig – I3 = 0 … (1)

Applying Kirchoff’s current law to junction D

I2 + Ig – I4 = 0 … (2)

Applying Kirchoff’s voltage law to closed path ABDA

I1 P + Ig G – I2 R = 0 … (3)

Applying Kirchoff’s voltage law to closed path ABCDA

I1 P + I3 Q – I4 S – I2 R = 0 … (4)

When the galvanometer shows zero deflection, the points B and D are at same potential and Ig = 0. Substituting Ig = 0 in equation (1), (2) and (3)

I1 = I3 … (5)

I2 = I4 … (6)

I1 P = I2 R … (7)

Substituting the values of (5) and (6) in equation (4)

I1 P + I1 Q – I2 S – I2 R = 0

I1 (P + Q) = I2 (R+S) … (8)

Dividing (8) by (7)

I1 (P + Q) / I1 P = I2 (R+S) / I2 R

(P + Q) / P = I (R+S) / R

1 + Q/P = 1 + S/R

so, Q/P = S/R or, P/Q = R/S

This is the condition for bridge balance. If P, Q and R are known, the resistance S can be calculated.